

Doherty Power Amplifier Design

David W. Runton, Michael D. LeFevre, Matthew K. Mellor

RFMD, Chandler, AZ, drunton@rfmd.com

Mobility. Connectivity. Energy.

Introduction

Intentions

 With high peak to average ratio signals in full use in the commercial world and expanding in the military world, how do we efficiently amplify these signals?

Doherty is old news!

- PA suppliers are getting very nearly equal results
- "Optimizations"/"tweaks" are simply exploiting tradeoffs

• How do we put it all together?

• And most importantly, do it quickly...

Doherty Design - Outline

1	Concept Introductions
2	Operational Fundamentals
3	The Functional Doherty Design – Load Modulation
4	Empirical Doherty Design Example
5	Building the Doherty Amplifier

Doherty Design - Outline

1	Concept Introductions
2	Operational Fundamentals
3	The Functional Doherty Design – Load Modulation
4	Empirical Doherty Design Example
5	Building the Doherty Amplifier

The Traditional Balanced Amplifier

- Both amplifier A1 and A2 contribute equally to Pout
- Both have standard Efficiency vs. Pout characteristics

The Doherty Amplifier

- A1 operates most of the time handles average signal
- A2 operates only when peak power is needed
- A1 and A2's operation is dependent on each other

Doherty Design - Outline

Operational Fundamentals – Class A

Page 8

IEEE

Under basic loadline condition

$$i_D(t) = I_P \cdot \cos(\omega t)$$

$$v_{DS}(t) = V_P \cdot \cos(\omega t + \varphi)$$

Operational Fundamentals – Class B

Load Resistor – R_L Adjust Input Drive for Max V

The output waveforms must be expanded into its Fourier series components

$$i_D(t) = I_0 + I_1 \cdot \cos(\omega t) + I_2 \cdot \cos(2\omega t) + I_3 \cdot \cos(3\omega t) + \cdots$$

Vds is simplified due to short circuited harmonics

 $v_{DS}(t) = V_{DC} - V_1 \cdot \cos(\omega t)$

IEEE 🏟

Operational Fundamentals – Class B at half power

*Reference [2]

Operational Fundamentals – Class B (Load Modulation)

*Reference [2]

Doherty Design - Outline

Textbook Load Modulation

 Doherty achieves Load modulation by using the principle of "load pulling" using two devices*

*Reference [3]

Textbook Load Modulation

*Reference [3]

Doherty Topology – Definitions

Practical Circuit Load Modulation

High Power Low Power

• The real implementation modulates $Z_o \rightarrow 2xZ_o$

- At the current source plane we want $R_L \rightarrow 2xR_L$
- How do we get this?

IEEE 🗇

Designing the Doherty – Peaking off state

- At the combiner node, we want $Z_{pk} = \infty$
 - When the peaking amp is off
- An additional phase shift can create this, $\delta_{\scriptscriptstyle Peaking}$

IEEE 🏟

Doherty – The Key to Operation or Why Doesn't it Work?

*Reference [3]

IEEE

RFMD

•))))

- There is no differentiation between standard and inverted Doherty topologies
- The Point of a Doherty amplifier is load modulation
 - how you achieve target impedances is irrelevant

Doherty Design - Outline

GaN Device used for Design Example

RFG1M09180

rfmd.com

700MHZ TO 1000MHZ 180W GAN POWER AMPLIFIER

Features

FFF

- Advanced GaN HEMT Technology
- Peak Modulated Power > 240W
- Single Circuit for 865 960MHz
- 48V Operation Typical Performance
 - o Pout 47dBm
 - o Gain 20dB
 - Drain Efficiency 39%
 - ACP -31.5dBc
 - Linearizable to -55dBc with DPD
- Optimized for video bandwidth and minimized memory effects
- RF tested for 3GPP performance
- RF tested for peak power using IS95
- Large signal models available

RF IN VGQ O Pin 1 (CUT) KF OUT VGQ O Pin 2

Package: Flanged Ceramic, 2 pin, RF400-2

Being Statistically Realistic

CHALLENGE: Design a symmetric Doherty Amplifier for α dBm average power operation with π dB peak to average ratio

Choosing the Load Conditions

CHALLENGE: Design a symmetric Doherty Amplifier for α dBm average power operation with π dB peak to average ratio

• To achieve the best efficiency, we need:

- Pout = $\alpha + \pi dBm$ composite power (full peak power)
 - Full contribution of peak power from each amplifier
- Pout = $(\alpha + \pi 6)$ dBm
 - Carrier amplifier is fully saturated
 - Peaking amplifier is just about to turn on
- $(\alpha + \pi 6)$ dBm > Pout > $(\alpha + \pi)$ dBm
 - Carrier amplifier maintains saturation without clipping
 - Peaking amplifier is "load modulating" the carrier amplifier

Choosing the Load Conditions

CHALLENGE: Design a symmetric Doherty Amplifier for α dBm average power operation with π dB peak to average ratio

Break the challenge into two static cases

- At αdBm composite power
 - Each amplifier is functioning at $(\alpha-3)$ dBm
 - Full addition of power from carrier and peaking amp recreating all peaks
 - Amplifier must not clip
- At slightly < αdBm composite power
 - If π is 6dB
 - Carrier amplifier is functioning < α dBm and is fully saturated (high efficiency)
 - If the peaking amplifier is off, this represents the best case efficiency
 - Be careful if π is \neq 6dB (for the symmetric case)

Choosing the Load Conditions

Composite Power αdBm Power from each amp (α -3)dBm

Load Contours: (α –3)dBm

Page 26

•>))))

Power from Carrier amp: αdBm

IEEE 🏟

Load Contours: adBm

•**>**))))

Doherty Design - Outline

1	Concept Introductions
2	Operational Fundamentals
3	The Functional Doherty Design – Load Modulation
4	Empirical Doherty Design Example
5	Building the Doherty Amplifier

Static Tuning – Reality sets in

- Model the circuit
- Tune under static conditions
- Assume load modulation

IEEE 🏟

Tuning Tips – Carrier Amp

The Carrier Amp is where it all happens!

- We want no Clipping at full power with Zo impedance
- Saturation with peaking amplifier off
 - Must make assumptions about peaking amp and its ability to load modulate

IEEE 🏟

Tuning Tips – Peaking Amp

- Set the off-state Z of peaking amp with $\delta_{Peaking}$
 - Is this really so important
 - Can we find some advantage not to set the off-state to ideal?
- Conventional wisdom says equal phase in each branch
 - Class-C peaking amp has large AM-PM component
 - Where do we want phase alignment?

Tuning Tips – Putting it all together

•50% Drain Efficiency

- •(7.5dB PAR @ 0.01% CCDF)
- Fully Linearizable with peak power recovery
- •15% bandwidth

Broadband Performance and Reality

Performance is only as good as your load modulation "bandwidth"

- The Doherty Amplifier topology can provide efficiency benefits
- Implementation is full of pitfalls
- Variants are many, based on the same concept

Do You Have Any Questions?

[1] Colantonio, Giannini, Limiti, *High Efficiency RF and Microwave Solid State Power Amplifiers*, Wiley and Sons, 1999, p 49-82

[2] Cripps, S., "Doherty RF Power Amplifiers, Theory and Practice", Short Course SC-4, 2009 International Microwave Symposium, Boston

[3] Cripps, S., *RF Power Amplifiers for Wireless Communications*, Artech House, 1999, p 225-235

